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ABSTRACT 14 
Distributed energy resources gain an increased importance in commercial and industrial 15 
building design. Combined heat and power (CHP) units are considered as one of the key 16 
technologies for cost and emission reduction in buildings. In order to make optimal decisions 17 
on investment and operation for these technologies, detailed system models are needed. These 18 
models are often formulated as linear programming problems to keep computational costs and 19 
complexity in a reasonable range. However, CHP systems involve variations of the efficiency 20 
for large nameplate capacity ranges and in case of part load operation, which can be even of 21 
non-linear nature. Since considering these characteristics would turn the models into non-22 
linear problems, in most cases only constant efficiencies are assumed. This paper proposes 23 
possible solutions to address this issue. For a mixed integer linear programming problem two 24 
approaches are formulated using binary and Special-Ordered-Set (SOS) variables. Both 25 
suggestions have been implemented into the optimization model DER-CAM to simulate 26 
investment decisions of CHP micro-turbines and CHP fuel cells with variable efficiencies. 27 
The approaches have further been applied successfully in a case study with four different 28 
commercial buildings. Comparison of the results between the standard version and the new 29 
approaches indicate that total annual system costs remain almost unchanged. System 30 
performance is subject to change and storage technologies become more important. Part load 31 
operation has mainly been found important for fuel cell units. The micro-turbine is found 32 
almost exclusively in full load, thus rendering the application of the new approaches for this 33 
technology unnecessary for the considered unit sizes and building types. The approach using 34 
binary variables was the most promising method to model variable efficiencies in terms of 35 
computational costs and results. It should especially be considered for specific fuel cell 36 
technologies. Further investigation on the impacts of this approach on the prediction of fuel 37 
cell and micro-turbine performance is suggested. 38 
 39 
Keywords: renewable energy supply system, non-linear optimization, linearization, microgrid 40 
modelling, distributed energy resources, combined heat and power (CHP) 41 
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DER  Distributed Energy Resources 45 
DR  Demand response 46 
el  electricity 47 
n  capacity sizes index 48 
inst  installed 49 
m  operational load level index 50 
k  number of units index 51 
M  number of capacity sizes 52 
N  number of operational load levels 53 
t  time index 54 
T  number of time steps 55 

Superscripts 56 
^  tabled value 57 

Dependent Variables 58 
α  heat to power ratio 59 
C  system costs 60 
E  system emissions 61 
EV  electric vehicle 62 
η  efficiency 63 
F  fuel consumption 64 
I  income from energy sales 65 
ν  weighting variable (binary variable) 66 
ω  weighting variable (binary variable) 67 
x  weighting variable (type SOS2) 68 
y  weighting variable (type SOS1) 69 
 70 
Decision Variables 71 
P  unit capacity 72 
U  operational load level 73 
 74 

1. Introduction 75 
Optimizing building energy supply systems with high temporal resolution over a large 76 
timespan – usually one year of hourly time steps – can result in mathematically complex 77 
problems with long calculation procedures before reaching optimal solutions. In order to keep 78 
computational efforts within reasonable levels several simplifications and assumptions are 79 
commonly used. Such simplifications can include those used in linear models that guarantee 80 
convergence and optimality, albeit sometimes at the cost of significant adverse impacts on 81 
model accuracy [1]. Looking at energy systems models specifically, a common approximation 82 
used concerns the efficiency of conventional power generation technologies, which in most 83 
cases is treated as a constant. This approximation might be close to reality for some 84 
technologies and operating conditions, but a very rough simplification for others. This paper 85 
will address this topic by modeling efficiency curves of conventional power generation 86 
technologies with different levels of accuracy, as we will discuss later in the paper. 87 
 88 
Using Combined Heat and Power (CHP) for energy supply is very often a sustainable and 89 
economic strategy to reduce fuel demand, and CHP technologies are among the most 90 
promising solutions for fuel saving, emission reduction, and fossil fuel independency [1]–[3]. 91 
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However, the economic convenience of CHP systems depends on the specific conditions 92 
under which they operate, since their performance significantly changes when operating in 93 
partial load [1]–[6]. The electrical and thermal efficiencies of CHP units depend on the 94 
technology, unit size (capacity), and loading conditions (operating point). M. Bianchi et al. [1] 95 
report that the nameplate electric efficiency and thermal efficiency at maximum recovered 96 
thermal power can range between 10%-30%, and respectively 40%-90%. Moreover, their 97 
electric efficiency in partial loads can degrade more than 20% compared to the full load 98 
efficiency. Higher partial load efficiency variations are also reported in [7]. CHP systems 99 
have potential to be used in various applications such as residential buildings, hospitals, and 100 
supermarkets, where electrical, thermal, and cooling demand is time-variant [1]. Application 101 
of CHP technologies in time-varying demand environments along with their partial load 102 
efficiency variations signifies the importance of modelling these technologies with load 103 
dependent efficiencies.  104 
 105 
To model and analyze the impact of partial load efficiencies for CHP technologies in an 106 
optimal DER investment problem, this paper proposes two linear approaches. Both 107 
approaches allow for integrating nonlinear efficiency curves into the optimization problem 108 
without abandoning the problem linearity. This type of modeling and analysis has not been 109 
carried out in the past. To model DER efficiencies (CHP technologies in particular), 110 
researchers either use constant efficiencies to simplify their model and keep it linear, or 111 
consider nonlinear efficiencies in nonlinear models. While the former approach may result in 112 
non-optimal results due to over-simplification, the latter may not be able to find the global 113 
optimum solution, may not find a solution at all due to the complexity of the resulting model, 114 
or increase the computational costs dramatically.  115 
 116 
Some examples of the models using constant efficiencies for CHP technologies are given in 117 
[8]–[16] . Milan et al. [8] propose an investment planning methodology to minimize total 118 
costs of 100% DER-based supply systems, considering the interdependencies between 119 
different supply technologies, for both Net Zero Energy Buildings (Net ZEB) and Low 120 
Energy Buildings (LEB). They formulate the problem as a Mixed Integer Linear Program 121 
(MILP). As in most of the similar models, the output from this model suggests optimal sizes 122 
of supply technologies and/or building load reduction measures, and proposed operational 123 
schedules. To simplify the model, constant CHP efficiencies are used in this work. Münster et 124 
al. [9] analyze the competition between district heating and other types of individual heating, 125 
and use also constant efficiencies to perform the analysis. The work in this paper is motivated 126 
by the increase in the attractiveness of individual solutions provided by the new technologies 127 
such as electric heating, heat pumps, and micro-CHP. In a similar application, Lund et al. [10] 128 
study different district and individual heating options for Denmark, and use constant 129 
efficiencies for the studies. Liu et al. [11] present a framework for optimal design of energy 130 
systems in commercial buildings, which aims to improve energy efficiency and environmental 131 
performance. They develop a multi-objective mixed-integer optimization problem to address 132 
the two economic and environmental objectives, and use constant efficiencies for all 133 
technologies. Similarly, Ren et al. [12] propose a MILP model for the planning and evaluation 134 
of DER systems, which delivers the optimal DER technologies to be installed and the optimal 135 
operation schedules, given the site’s energy loads, weather conditions, tariff structure, and 136 
candidate DER technology characteristics. In this model, again only constant efficiencies are 137 
considered for all DER technologies, including the ones with heat recovery capabilities. 138 
Hawkes et al. [13] develop a linear model for the high level microgrid system design, 139 
including generator and storage unit commitment, to minimize the cost. A constant efficiency 140 
is considered for the CHP units in this model. In another work in [14], a mixed integer linear 141 
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programming model is developed for long-term optimization of cogeneration systems, which 142 
uses load-independent fixed efficiencies. 143 
 144 
Cho et al. [15] present an optimal energy dispatch algorithm that minimizes the cost of 145 
electric and natural gas supplies. This work develops a linear programming model with 146 
cooling, heating, and electrical load demand constraints and constraints of Combined Cooling, 147 
Heating, and Power (CCHP) components’ efficiencies. In this model, the efficiency of each 148 
CCHP component is assumed to be constant. Also, in another work in [16], Cho et al. present 149 
results from operation optimization of CCHP systems for various climate conditions, which 150 
aims to reduce operational costs, primary energy consumption, and carbon dioxide emissions. 151 
In this work, they assume a linear behaviour with a constant slope for the electricity output to 152 
fuel ratio, thus constant efficiencies. To avoid "on/off" constraints in their MILP model, they 153 
use two LP simulations and choose the smallest output value.  154 
 155 
There are also some research works that use non-fixed partial load efficiency models for CHP 156 
technologies, but do not keep the problem linear and use nonlinear formulations. Such 157 
examples are common in combined heat and power economic dispatch formulations, such as 158 
[17]–[23]. For the fuel consumption of a CHP unit in these formulations, convex quadratic 159 
functions in both output power and output heat of the unit are used, which result in nonlinear 160 
formulations. To solve the resulting nonlinear optimization problems, heuristic methods are 161 
commonly applied, e.g. Particle Swarm Optimization (PSO) [17], [18], Teaching Learning 162 
Based Optimization (TLBO) [19], Mesh Adaptive Direct Search (MADS) [20], and Cuckoo 163 
Search Algorithm [21]. Heuristic optimization methods, especially for large-scale 164 
optimization problems, are not guaranteed to find a solution and the solution they find may 165 
not be the global solution. Hence in large-scale optimization problems with millions of 166 
decision variables, such as the ones discussed in this paper, linear problem formulations are 167 
highly preferred over nonlinear ones.  168 
 169 
This paper presents two piecewise linear approximation methods for nonlinear DER 170 
efficiency curves. Both suggestions have been implemented in the optimization model DER-171 
CAM (Distributed Energy Resources and Customer Adoption Model), which traditionally 172 
used fixed efficiencies for CHP micro-turbine and fuel cell technologies [24]–[26]. DER-173 
CAM is a decision support tool for decentralized energy systems developed by the Lawrence 174 
Berkeley National Laboratory (LBNL). It is formulated as a Mixed-Integer Linear Program 175 
(MILP), and implemented in the General Algebraic Modeling System (GAMS). DER-CAM 176 
has two main versions, i.e. the Investment and Planning DER-CAM, and the Operations 177 
DER-CAM. The Investment and Planning DER-CAM picks optimal microgrid/building 178 
equipment combinations and sizes, and their corresponding dispatch, using three day types 179 
per month to represent a year of historic hourly energy loads, technology costs and 180 
performance, fuel prices, historic weather data, and the utility tariff. The Operations DER-181 
CAM is used for microgrid/building dispatch optimization for a given period, typically 182 
several days to a week ahead, with a time resolution of 5 minutes, 15 minutes, or 1 hour, 183 
using weather and load forecast for the optimization period, and assuming a known 184 
technology portfolio [27]. This work uses the Investment and Planning version of DER-CAM.  185 
 186 
The contributions of this paper are twofold. First, to address the problem of including 187 
nonlinear efficiencies in DER optimization problems, without sacrificing the problem 188 
linearity, this paper proposes two alternative stepwise methods to approximate two-189 
dimensional non-linear DER efficiency curves. In the first method, binary variables are used 190 
to approximate nonlinear efficiency curves with piecewise linear ones. In the second method, 191 
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Special-Ordered-Set (SOS) variables are used to approximate the nonlinear efficiency curves. 192 
SOS variables are defined as consecutive, ordered sets of variables, where no more than one 193 
or two (based on SOS type) adjacent elements in the ordered set can take non-zero values. 194 
The problem formulation resulting from the former method can be solved by any solver 195 
capable of solving mixed-integer linear problems. On the contrary, the latter method results in 196 
a formulation that can only be solved by solvers recognizing SOS variables. The performance 197 
of these two methods is investigated in detail by applying them in a case study consisting of 198 
four different buildings. The second contribution of this paper is in analyzing the impact of 199 
considering nonlinear DER efficiency curves of three relevant technologies on the final 200 
solution and recommending best practices for including such nonlinear efficiency curves for 201 
other similar problems.  202 
 203 
The structure of the following parts of the paper is as follows: 204 

x Section 2 describes the optimization model DER-CAM which was adapted in this 205 
paper. 206 

x Section 3 discusses the efficiency characteristics of DER technologies in terms of 207 
installed capacity and part load. 208 

x Section 4 introduces the theory for two linearization approaches of non-linear 209 
efficiency curves. 210 

x Section 5 presents the case study performed together with the modifications 211 
undertaken in DER-CAM and detailed results. 212 

x Section 6 summarizes the main findings of the case study and gives recommendations 213 
for further action. 214 

 215 

2. DER-CAM 216 
The Distributed Energy Resources Customer Adoption Model (DER-CAM) is a decision 217 
support tool developed at Lawrence Berkeley National Laboratory with the purpose of 218 
optimizing DER investment and operation decisions in microgrids and building energy supply 219 
systems. The model is formulated as a mixed integer linear program (MILP), and being firstly 220 
introduced in the year 2000 it has been constantly extended and applied throughout several 221 
dozen case studies [28]–[33]. Currently, DER-CAM features two main branches: one to 222 
optimize investment decisions based on historic information – Investment & Planning DER-223 
CAM, and a second one to determine optimal operational schedules of installed equipment 224 
and for predictive microgrid controller design, based on weather and load forecasts – 225 
Operations DER-CAM. Investment & Planning DER-CAM is publicly available through a 226 
web-based interface [28] and will be the reference for further discussions on DER-CAM in 227 
this work. 228 
 229 
Once detailed load profiles are known, such as demand data for space heating, hot water, 230 
cooling, and electricity, DER-CAM determines the optimal installed capacity of DER 231 
technologies with respect to a user-defined objective function, generally economic and/or 232 
environmental. Key input data also includes electricity and natural gas tariffs, and prices on 233 
relevant fuels and financial subsidies, if applicable. For all considered DER technologies, 234 
performance models are implemented based on state-of-the-art technical specifications, 235 
namely with regards to efficiencies and heat-to-power ratios. Moreover, detailed cost data for 236 
investment, operation and maintenance of each DER unit are considered in the model. In 237 
order to solve the DER investment problem, DER-CAM determines on an hourly basis the 238 
optimal scheduling of the candidate energy supply system for one reference year. Therefore, 239 
investment decisions are based on a bottom up approach and results will also include detailed 240 
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operational schedules for all selected technologies, along with key variables such as total 241 
annual energy costs and CO2 emissions. 242 
 243 
The hourly system performance is based on detailed energy balances. Fig. 1 indicates the 244 
energy resources, energy flows and end-uses implemented in DER-CAM in the form of a 245 
SANKEY diagram [26]. This provides a full view of energy flows in the form of arrows from 246 
possible resources considered within the optimization and how they relate to consumption. 247 

 248 
Fig. 1. SANKEY diagram indicating energy flows in DER-CAM [26] 249 

Energy sources considered in DER-CAM include utility natural gas, biofuels, solar radiation, 250 
utility electricity, and geothermal heat. Dark shaded arrows in Fig. 1 represent natural gas and 251 
biofuels. Light grey shaded arrows represent electricity, and the dark grey colour stands for 252 
heat and recoverable waste heat. DER-CAM identifies the optimal system configuration in 253 
terms of costs and/or environmental impact, while meeting all shown energy demands on the 254 
right side of the diagram, defined for each hourly time step in a given site. Similarly to 255 
consumption profiles, on-site resource availability such as solar radiation and other boundary 256 
conditions can be highly fluctuating, and the energy flows for each carrier might reflect these 257 
fluctuations accordingly. 258 
 259 
The key generation options in DER-CAM are CHP technologies, which interconnect supply 260 
and storage of electricity and heat, although other options such as photovoltaic and solar 261 
thermal panels are available. Recently, DER-CAM has also been extended to consider electric 262 
vehicles for vehicle-to-building services [34], and several other features are currently under 263 
development. 264 
 265 
DER-CAM allows a flexible objective function definition, such as minimizing total annual 266 
energy costs, CO2 emissions, net energy minimization, or combinations of them. Eq. 1 defines 267 
the objective function for cost optimization: 268 
 269 
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𝑚𝑖𝑛 𝑓𝑐𝑜𝑠𝑡𝑠(𝑃𝑖𝑛𝑠𝑡, 𝑈𝑡) = 𝐶𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑒𝑙 + 𝐶𝐷𝐸𝑅 + 𝐶𝑓𝑢𝑒𝑙 + 𝐶𝐷𝑅 + 𝐶𝐵𝑎𝑡 − 𝐼   (1) 270 
 271 
The total annual energy costs Ctotal depend on the installed capacity of DER technologies, 272 
Pinst, and their operational level Ut at each hour t. These variables have impacts on the 273 
electricity costs Cel, on the amortized installation and maintenance costs of DER components 274 
CDER, on fuel costs Cfuel, on costs of adopting demand response measures CDR, and also on 275 
electric vehicle battery degradation costs due to interactions with the building energy supply 276 
system CBat, although electric vehicles are not considered in this work. Moreover, income 277 
generated by energy sales to public networks I is subtracted from the total costs. 278 
 279 
The objective function for the minimization of CO2 emissions is formulated according to Eq. 280 
2: 281 
 282 
𝑚𝑖𝑛 𝑓𝐶𝑂2(𝑃𝑖𝑛𝑠𝑡, 𝑈𝑡) = 𝐸𝐶𝑂2,𝑡𝑜𝑡𝑎𝑙 = 𝐸𝐶𝑂2,𝑒𝑙 + 𝐸𝐶𝑂2,𝑓𝑢𝑒𝑙 + 𝐸𝐶𝑂2,𝐸𝑉    (2) 283 
 284 
Similarly to annual energy costs, the total annual CO2 emissions ECO2, total are a function of 285 
installed DER capacity and operational schedules. They are defined in DER-CAM as the sum 286 
of CO2 emissions related to the generation of grid-supplied electricity, emissions caused by 287 
onsite fuel consumption ECO2,fuel, and CO2 emissions caused by electric vehicle charging ECO2, 288 
EV (not considered in this work).  289 

Schematically, the formulation implemented in DER-CAM can be described according to Fig. 290 
2.  291 

 292 
Fig. 2. Schematic representation of DER-CAM 293 

Several assumptions and simplifications are applied in DER-CAM to model technology 294 
performance and customer decisions. It is estimated that the customer bases his investment 295 
and operation strategy solely on optimizing the direct economic benefit, CO2 reductions, or a 296 
combination of both. Concerning the technologies, constant efficiencies are assumed for the 297 
operation throughout the whole component lifetime without considering possible output 298 
declines. Furthermore, start-up and ramping restrictions of supply units are not considered, as 299 
well as reliabilities and power quality benefits. 300 
 301 
Researching the impact of assuming constant efficiencies for supply components is the 302 
objective of this work. In the following chapters relevant technologies will be identified and 303 
two approaches are described to address this issue. Furthermore, the extension of the 304 
Investment & Planning version of DER-CAM is presented in order to implement these 305 
approaches. 306 
 307 
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3. Efficiencies of DER-Technologies 308 
Typically, it can be stated that the maximal electrical efficiency ηel,max of DER technologies 309 
depends on two key factors: the installed unit capacity Pinst, and the operating load level at a 310 
given time Ut:  311 
 312 
𝜂𝑒𝑙 = 𝑓(𝑃𝑖𝑛𝑠𝑡,𝑈𝑡)          (3) 313 
 314 
In Fig. 3, the maximal electrical efficiency of natural gas powered Internal Combustion 315 
Engines (ICE) is shown for different unit sizes. This relation is based on data from [35], 316 
which gathered and analysed data from several hundred market available units of different 317 
sizes in Germany. The figure illustrates significantly lower efficiencies for small capacities 318 
and a non-linear relationship in the depicted range between the installed electrical power and 319 
the maximal efficiency.  320 
 321 

 322 
Fig. 3. Maximal electrical efficiencies for natural gas powered ICEs [35] 323 

It should be noted that the graph in Fig. 3 is heavily dependent on the fuel and only valid for 324 
natural gas powered plans. For other fuels, e.g. diesel, different characteristics may apply and 325 
the relation between installed power and maximum electrical efficiency can be close to linear 326 
behaviour for certain fuel types [35]. 327 
 328 
Besides the installed capacity, the operational load level Ut also influences the efficiency of 329 
certain technologies. Fig. 4 depicts the part load performance of a typical natural gas powered 330 
ICE based on data given in [36]. As in Fig. 3, a non-linear correlation can be observed.  331 
 332 
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 333 
Fig. 4. Electrical efficiencies for a typical natural gas powered ICE in part load [36] 334 

Based on these observations, considering variable efficiencies results in a two-dimensional 335 
non-linear problem when selecting the optimal unit sizes to meet energy demand in a given 336 
building or microgrid, although this dependency is not valid for all technologies. 337 
 338 
Table 1 lists relevant supply technologies considered in DER-CAM, indicating whether or not 339 
they exhibit considerable efficiency variations during part load operation, and if they were 340 
considered in the developments introduced by this work. 341 
 342 
From the seven technologies listed, all combustion technologies and fuel cells have part load 343 
characteristics. The maximal efficiencies of photovoltaic panels (PV), solar thermal collectors 344 
(ST), and heat pumps (HP) do not differ significantly on part load conditions or on installed 345 
capacity.  346 
 347 
 348 

Table 1. Relevant technologies in DER-CAM with part-load classification 349 
 350 

Technology Variable part load efficiency Included in this work 
Photovoltaic no - 

Solar Thermal Collector no - 
Heat Pump no - 

Fuel Cell (FC) yes yes 
Internal Combustion Engine 

(ICE) yes yes 

Micro-turbine (MT) yes yes 
Gas Turbine yes no 

 351 
The developments introduced in this work regarding variable efficiencies focus on Fuel Cells 352 
(FC), Internal Combustion Engines (ICE) and Micro-turbines (MT), as Gas Turbines are 353 
typically available in large capacity sizes and are not the focus of this work. 354 
 355 
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4. Modelling two-dimensional non-linear efficiency curves 356 
Since efficiencies are directly dependent on the installed capacity Pinst and operational load 357 
level Ut, both parameters can be identified as the decision variables defining the energy 358 
conversion capability of a unit over time. Pinst and Ut influence the conversion efficiency, the 359 
fuel consumption Ft and, if connected to a heat exchanger in a CHP system, the heat output 360 
Pheat,t. Since the load level Ut can change for each point in time, the functions are dependent 361 
on the time index t as shown in Eqs. 4 to 6, where Pinst and Ut refer to the electrical output in 362 
all equations: 363 
 364 
𝑃𝑒𝑙,𝑡 = 𝑃𝑖𝑛𝑠𝑡 ∙ 𝑈𝑡          (4) 365 
 366 
𝐹𝑡 = (𝑃𝑖𝑛𝑠𝑡∙𝑈𝑡)

𝜂𝑒𝑙,𝑡
           (5) 367 

 368 
𝑃ℎ𝑒𝑎𝑡,𝑡 = 𝑃𝑖𝑛𝑠𝑡 ∙ 𝑈𝑡 ∙ 𝛼𝑡         (6) 369 
 370 
with αt being the heat to power ratio defined as in Eq. 7: 371 
 372 
𝛼𝑡 = 𝜂ℎ𝑒𝑎𝑡,𝑡

𝜂𝑒𝑙,𝑡
           (7) 373 

 374 
and ηel,t being a function of Pinst and Ut. 375 
 376 
Even though the efficiency curves shown in Fig. 3 and 4 can be linearized using the 377 
approaches presented later in this paper, one should be aware of that all three variables Pel,t, Ft 378 
and Pheat,t are dependent on the product of Pinst and Ut. Their calculation after the 379 
determination of these two decision variables would create an additional non-linear problem. 380 
For this reason all values for Pel,t, Ft and Pheat,t are calculated beforehand for the range of 381 
possible installed capacities and operational load levels. Table 2 shows electrical efficiencies 382 
of a natural gas powered ICE for two installed capacities and several load levels. The values 383 
are based on data given in [36]. 384 
 385 

Table 2. Electrical efficiencies of natural gas powered ICE [36] 386 
 387 

 Load level, Um,t 
Installed capacity 
option, Pinst,n 

U1,t 
0% 

U2,t 
30% 

U3,t 
40% 

U4,t 
50% 

U5,t 
60% 

U6,t 
70% 

U7,t 
80% 

U8,t 
90% 

U9,t 
100% 

Pinst,1 60 kW 0 0.246 0.257 0.267 0.274 0.28 0.285 0.288 0.29 
Pinst,2 250 kW 0 0.255 0.266 0.276 0.283 0.29 0.295 0.298 0.30 

 388 
From now on tabled values will be marked with a circumflex (^) and the indices n and m will 389 
refer to elements in the set of the discrete installed capacity options and to considered load 390 
levels, respectively. The tables for Pel,t, Ft and Pheat,t form the basis for two approaches, which 391 
allow linearizing and approximating two-dimensional non-linear efficiency curves into 392 
MILPs. Both approaches will be elaborated in the following sections. 393 
 394 
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4.1. Approach 1 - Linearization using binary variables 395 
The first approach is based on binary variables, which are used to form classes with each class 396 
containing a certain tabled value. Fig. 5 shows the principle equations and their relationship 397 
for the binary approach. 398 
 399 

 400 
Fig. 5. Schematic of the binary approach choosing efficiencies based on installed capacity 401 
and operational load level at each time step t 402 

The decision on the installed capacity is guaranteed by Eq. 8, which consists on the 403 
summation over the product of tabled capacities options Pinst,n with a corresponding binary 404 
variable for each option: 405 
 406 
𝑃𝑖𝑛𝑠𝑡 = ∑ (𝑃𝑖𝑛𝑠𝑡,𝑛

∧ ∙ 𝑣𝑛𝑛 )         (8) 407 
 408 
The index n refers to the nameplate capacity specified beforehand in the data table with N 409 
indicating the number of tabled sizes. 410 
In order to assure that only one capacity is chosen, the constraint in Eq. 9 is introduced. Also, 411 
it should be noted that since the investment decision is not time-dependent, these equations 412 
hold for the entire calculation process. 413 
 414 
∑ 𝑣𝑛𝑛 ≤ 1           (9) 415 
 416 
The operational level of the installed capacity option n in each time step t is determined by 417 
Eq. 10, where the binary variable υn guarantees the lookup is made on the appropriate 418 
capacity option, and the binary variable ωn,m,t guarantees that only one operating point is 419 
selected in each time step: 420 
 421 
∑ 𝜔𝑛,𝑚,𝑡 − 𝑣𝑛 = 0 𝑚  for n={1,2,…,N} and t={1,2,…,T}     (10) 422 
 423 



TO BE PUBLISHED IN APPLIED ENERGY 

Thus, solving Eq. 10 over time determines the operation point m,t for installed capacity option 424 
n, for which efficiency, fuel consumption, and power output can be determined based on the 425 
tabled values, as shown below for electric efficiency: 426 
 427 
𝜂𝑒𝑙,𝑛,𝑚,𝑡 = 𝜂𝑒𝑙,𝑛,𝑚

⋀ ∙ 𝜔𝑛,𝑚,𝑡 for n={1,2,…,N}, m={1,2,…,M} and t={1,2,…,T}  (11) 428 
 429 
In total, Eq. 11 involves n by m and t calculations. Thus, the final values used to extend the 430 
existing DER-CAM formulation in a seamless way are obtained by summation, where all 431 
binary variables except the selected n,m pair are null for each time step t, as shown in Eq. 12: 432 
 433 
𝜂𝑒𝑙,𝑡 = ∑ ∑ 𝜂𝑒𝑙,𝑛,𝑚,𝑡𝑚𝑛  for t={1,2,…,T}       (12) 434 
 435 
While only the electric efficiency is mentioned, the corresponding fuel consumption, 436 
electricity output and, if relevant, heat generation are calculated in a similar fashion according 437 
to Eq. 10 and 11 using the same binary variables ωn,m,t. 438 
 439 
While the use of binary variables for step-wise approximations of non-linear functions is not 440 
new, this technique has not been previously used in DER investment problems. It provides an 441 
effective way to increase the accuracy of DER modeling, but it must also be pointed out that 442 
this formulation carries the disadvantage only allowing single tabled values to be selected, 443 
with no interpolation between them. This decreases the precision of the results and for very 444 
restricted energy systems, such as buildings in islanded mode, there might be no feasible 445 
solution. Furthermore, the flexibility of the methodology is considerably reduced, as 446 
capacities have to be pre-defined in the data tables. Thus, if the user intends to investigate unit 447 
sizes outside of the table range, the relevant data has to be gathered prior to model 448 
application. 449 
 450 

4.2. Approach 2 – Linearization using SOS variables 451 
An alternative to the method using binary variables described above relies on the use of 452 
Special-Ordered-Set (SOS) variables, as proposed by [37]. SOS variables are defined as 453 
consecutive, ordered sets of variables. They differ from other variables in the sense that no 454 
more than one (called SOS1) or two (called SOS2) adjacent elements in the ordered set can 455 
take non-zero values.  456 
 457 
By constraining their lower and upper boundaries to 0 and 1, SOS variables can be used as 458 
weighting factors in linearization methods, which is the approach used in this work to 459 
linearize the efficiency plane of distributed generation technologies. Unlike the binary 460 
approach described in the previous section, the use of SOS variables as weighting factors 461 
allows selecting either single tabled values or interpolating between two pre-defined 462 
operational load levels. 463 
 464 
Although the direct use of binary variables is avoided, using SOS requires a MILP solver 465 
capable of dealing with this special type of variables. This is due to the fact that the SOS 466 
restrictions, forcing a maximum of one or two non-zero adjacent values, are modeled 467 
internally by the solver with auxiliary sets of binary variables [28], [38]. In this work, the 468 
CPLEX solver was used, which can automatically detect SOS structures in problem 469 
formulations, even if not explicitly declared, and adapt the branch-and-bound procedure 470 
accordingly [39]. 471 
 472 
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Eq. 13 describes how the electrical efficiency, defined as a function of Pinst and Ut, can be 473 
approximated in each time step t using the SOS2 variables xn,m,t: 474 
 475 
𝜂𝑒𝑙,𝑡 = 𝑓(𝑃𝑖𝑛𝑠𝑡, 𝑈𝑡) = ∑ ∑ 𝑓(𝑃𝑖𝑛𝑠𝑡,𝑛

⋀ , 𝑈𝑛,𝑚⋀𝑚 ) ⋅ 𝑥𝑛,𝑚,𝑡𝑛 = ∑ ∑ 𝜂𝑒𝑙,𝑛,𝑚
∧ ∙ 𝑥𝑛,𝑚,𝑡𝑚𝑛 for t={1,2,…,T}476 

            (13) 477 
 478 
where the weighting variables xn,m,t are defined as positive variables with: 479 
 480 
0 ≤ xn,m,t ≤ 1 for n={1, 2,..., N}, m={1, 2,…, M} and t={1, 2,…, T} (14) 481 
 482 
As previously mentioned, solving the operational efficiency for DER technologies depends on 483 
the installed capacity and on the operational level in each time step. For this reason, a 484 
distinction must be made between the two, as the installed capacity is selected from the N 485 
discrete capacity options and the operational level can be a continuous value interpolated 486 
between two consecutive M levels. Thus, a SOS1 condition is used to solve the installed 487 
capacity and a SOS2 condition is used to find the operational load level, as illustrated in Fig. 488 
6. 489 
 490 

 491 
Fig.6. Schematic of the approach based on SOS variable declarations to choose efficiencies 492 
changing with installed capacity Pinst and operational load level Ut at each time step t 493 

In this figure, the selection of the installed capacity from the discrete set is represented by the 494 
different “slices” for each tabled capacity. Once a capacity is chosen (in Fig. 6 this would be 495 
the installed capacity P^inst,4 highlighted in grey), the load level can be determined over time. 496 
In practice, the goal is to allow load levels to be any continuous number between a minimum 497 
part-load threshold and 1, representing the load operation range allowed for each technology. 498 
 499 
In the tabled values, each Ut level stands for a discrete point within the available operational 500 
load range and the use of SOS variables allows a better representation by creating the 501 
possibility of interpolating between two consecutive tabled load levels. E.g., if load levels are 502 
tabled with a resolution of 10%, the relevant efficiency for 75% load operation could be 503 
obtained by interpolating between the values pre-defined for 70% and 80% load. This is done 504 
using variables xn,m,t under an SOS2 constraint in the m-dimension: 505 
 506 
∑ 𝑥𝑛,𝑚,𝑡 = 1 𝑎𝑛𝑑 𝑥𝑛,𝑚,𝑡 + 𝑥𝑛,𝑚−1,𝑡 ≥ 0𝑚  for up to two elements (SOS2)   (15) 507 
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 508 
As stated above, no more than two consecutive elements within the SOS2 are allowed to be 509 
non-zero. Since the sum of all xn,m,t in the n- and m-dimension has to be 1, single tabled values 510 
can be chosen (if xn,m,t = 1) or interpolated between them (two consecutive xn,m,t values add up 511 
to 1 in the m-dimension). 512 
 513 
As stated above, the selection of a discrete capacity Pinst requires the use of a SOS1 condition 514 
in the n-dimension. However, the GAMS platform used to implement DER-CAM does not 515 
support this directly: Only the last index can be assigned to an SOS variable. Therefore, an 516 
auxiliary binary variable yn is introduced to allow only one variable to be non-zero in the n-517 
dimension of xn,m,t by applying Eq. 16 and 17: 518 
 519 
∑ 𝑥𝑛,𝑚,𝑡 = 𝑦𝑛𝑚  for n={1,2,…,N} and t={1,2,…,T}      (16) 520 
 521 
∑ 𝑦𝑛 = 1𝑛            (17) 522 
 523 
The same method can be used to exclude load levels between the minimum threshold and 524 
zero. By assigning a binary variable to this range, only zero or the minimum load can be 525 
achieved. Also, since the sum of all xn,m.t values has to be 1, it is important to always define 526 
“placeholders” with a zero load and a zero capacity, in case the unit is not installed and/or not 527 
operated at a certain point in time.  528 
 529 
Similarly to the binary variable technique, xn,m,t is also used as a pointing variable when using 530 
SOS variables to indicate the chosen or interpolated tabled values for the electricity 531 
generation, fuel consumption and heat output. Eq. 18 shows the calculation of the supplied 532 
electricity at time step t as an example: 533 
 534 
𝑃𝑒𝑙,𝑡 = ∑ ∑ 𝑃𝑒𝑙,𝑛,𝑚

∧ ∙ 𝑥𝑛,𝑚,𝑡𝑚𝑛  for t= {1,2,…,T}      (18)  535 
 536 
It should be noted that all these equations have to be solved for each time-step t, expressed in 537 
all variables. The installed capacity, which remains constant over time, is given by Eq. 19: 538 
 539 
𝑃𝑖𝑛𝑠𝑡 = ∑ ∑ 𝑃𝑖𝑛𝑠𝑡,𝑛

∧ ∙ 𝑥𝑛,𝑚,𝑡𝑚𝑛  for t={1,2,…,T}      (19)  540 
 541 
The main advantage of this approach is the flexibility in using the tabled values. Interpolation 542 
is allowed between different load levels, and further constraints such as a minimum load can 543 
be easily implemented. Thus, the results obtained using this approach should be more precise 544 
than using Approach 1. Furthermore, solvers such as CPLEX apply adapted branch-and-545 
bound procedures for SOS variables, which can have positive influence on the calculation 546 
time [38]. On the downside, more variables are required for this approach, such as the SOS1 547 
variable yn. This in return increases the complexity of the problem, and therefore, the overall 548 
processing time may become longer even considering the improved performance in SOS-549 
enabled solvers. It further should be noted that not all MILP solvers can handle SOS 550 
variables, and that their internal definition might even differ from solver to solver [40]. It is 551 
therefore advised to consult the respective solver manual before applying this approach. 552 
Additionally, the general drawbacks mentioned in the binary approach concerning the overall 553 
flexibility of the methodology also apply: Both approaches result in considerably less flexible 554 
models and require more user intervention. 555 
 556 
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The following chapters describe the integration of both approaches into DER-CAM and a 557 
comparison is conducted based on several case studies.  558 
 559 

5. Modelling effects of considering variable efficiencies 560 
In order to evaluate the effects of variable efficiencies on energy system models and to be 561 
able to compare these approaches, they both have been integrated into DER-CAM and applied 562 
for several case studies. In the following sections the implementation of both approaches into 563 
DER-CAM, relevant input data and assumptions, as well as the results of various simulations 564 
are presented. The chapter concludes with a discussion of the observations. 565 

5.1. Implementation into DER-CAM 566 
The problem solved by DER-CAM is formulated using GAMS, which is commonly used for 567 
large scale modeling applications. It allows creating high level mathematical formulations and 568 
converts them to representations required by specific third-party solvers such as CPLEX, 569 
MINOS, or BARON. It can be used to model and solve various mathematical programs 570 
including linear (LP), non-linear (NLP), mixed integer linear (MILP) and mixed integer non-571 
linear programs (MINLP) [41]. Both the binary and SOS variables approaches described in 572 
this paper are directly supported by GAMS, although SOS variables are a special feature and 573 
not all MIP solvers available through GAMS support them. 574 
 575 
Both the binary and SOS variable approaches were implemented in the latest Investment & 576 
Planning (I&P) version of DER-CAM (v4.1.1), which considers advanced features including 577 
investments in passive building components, such as windows and insulation. 578 
As stated in Chapter 2, I&P DER-CAM finds optimal solutions for microgrid and building 579 
energy supply systems, considering investments in energy supply and storage technologies, 580 
and this is done by sampling three typical days for each month or a typical year, resulting in a 581 
total of 36 days of hourly loads. Along with investment decisions, all energy outputs, fuel 582 
consumption, CO2 emissions, and other operating schedules are determined by DER-CAM 583 
and reported for this reference year. 584 
 585 
Due to the current structure of DER-CAM, both approaches presented to model non-linear 586 
efficiency curves have to be adapted to ensure their implementation and several pre-587 
calculations have to be made. Fig. 7 shows an overview of how both approaches are 588 
integrated and the corresponding data handling. Specifically, the user specifies efficiencies for 589 
certain partial loads and installed capacity sizes for each technology and relevant fuel type 590 
(light shaded on the left upper corner of the graphic). This data is highly relevant since the 591 
efficiency characteristics can differ significantly depending on the fuel used, even for the 592 
same technology. In this work, three efficiency tables were specified for the ICE, MT and FC, 593 
all three assuming natural gas operation.  594 
 595 
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 596 
Fig. 7. Schematic of the implementation of the approach using SOS and binary variables in 597 
DER-CAM 598 

Given the specified efficiency table for each size and load level, DER-CAM calculates the 599 
corresponding values for electricity output, fuel consumption and, if relevant, heat output. As 600 
part of the DER-CAM structure, users specify desired sizes of each technology in another part 601 
of the model. Consequently, the efficiency table is in a first step condensed to these sizes to 602 
avoid unnecessary calculations. When all data is pre-processed the actual optimization 603 
process is launched. The binary or SOS weighting variables are determined for each 604 
technology and calculation step t, determining the load levels for all points in time. As 605 
mentioned earlier, the variables are used to obtain values for all four data tables, marked in 606 
the figure with black boxes for the chosen index of Pinst and Ut. The light shaded box indicates 607 
the resulting value in the table.  608 
 609 
In addition to the above description, the structure of DER-CAM considers another dimension: 610 
the number of units, k, since the model allows for more than one unit of each size and 611 
technology to be installed, and determines the optimal number k for each technology as part 612 
of the solution. This additional dimension requires that a maximum number of components 613 
are implemented in the model, and in this work 15 units have been set as a limit for each 614 
technology. DER-CAM applies the presented approaches for each unit up to the maximum 615 
number, determining if the unit should be installed and operated at a certain time t or not. This 616 
is indicated in Fig. 7 on the lower right part. As an example, the equation for the electricity 617 
output of the approach using SOS2 variables is adapted in Eq. 20 by adding another index k to 618 
the weighting variable referring to the number of installed units.  619 
 620 
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𝑃𝑒𝑙,𝑡,𝑘 = ∑ ∑ 𝑃𝑒𝑙,𝑛,𝑚
∧𝑚𝑛 ∙ 𝑥𝑛,𝑚,𝑡,𝑘 for t={1,2,…T} and k={1,2,…,K}   (20)  621 

 622 
The other equations for both approaches are adapted accordingly, adding the indices t and k. 623 
 624 

5.2. Input data and assumptions 625 
As stated above, DER-CAM decides on the optimal energy supply system configuration using 626 
several input data for one reference year. The main inputs are [42]: 627 
 628 

x hourly building loads for electricity, heating, cooling, domestic hot water and cooking 629 
x natural gas and electricity prices 630 
x local solar radiation 631 
x CO2 emission factors for utilities to evaluate CO2 mitigation by local energy supply 632 
x performance and cost data of building equipment including energy supply 633 

technologies 634 
 635 
Additionally, as mentioned in chapter 4, the approaches now introduced require user 636 
specifications on the efficiency curves of each technology and applied fuel. Other parameters, 637 
such as electricity generation and fuel consumption, are calculated based on these efficiencies. 638 
The heat output is determined based on the assumption that the overall efficiency of all three 639 
technologies considered in this paper is constant for all load levels. This simplification is 640 
reasonable, as lower part load efficiency levels lead to more waste heat. When this happens 641 
the heat to power ratio increases (greater amount of heat recovered and lower power output), 642 
which is compatible with a constant overall efficiency, as illustrated in Eq. 21. This equation 643 
shows how the heat output table is determined for both approaches based on Eq. 4 and 5 and a 644 
constant overall efficiency for each capacity: 645 
 646 

𝑃ℎ𝑒𝑎𝑡,𝑛,𝑚
∧ = 𝜂𝑜𝑣𝑒𝑟𝑎𝑙𝑙,𝑛−𝜂𝑒𝑙,𝑛,𝑚

∧

𝜂𝑒𝑙,𝑛,𝑚
∧ ⋅ 𝑃𝑒𝑙,𝑛,𝑚

∧  for n={1, 2,..., N}, m={1, 2,…, M}, t={1,2,…T}, 647 

k={1,2,…,K}           (21)  648 
 649 
This method for calculating CHP efficiency, known simply as total system efficiency, is the 650 
most commonly used approach and an adequate method to compare CHP efficiency to the 651 
efficiency of a system with separate heat and power production. In situations where the 652 
electrical efficiency of CHP is being compared with conventional power production, the 653 
alternative effective electric efficiency metric should be used.  As DER-CAM considers 654 
simultaneously different end-use loads including both power and heating, and different 655 
options to meet these loads are present in the model, the total system efficiency method is 656 
better suited. 657 
 658 
The improvements made to DER-CAM to model non-linear efficiency curves were analysed 659 
by performing a case study with a number of selected buildings, which have been previously 660 
analysed using DER-CAM in the report “Encouraging Combined Heat and Power in 661 
California Buildings” [42]. The results from this report were used as a reference for 662 
comparison when evaluating the effects of considering variable efficiencies. 663 
 664 
According to [42], building load profiles were obtained from the California Commercial End-665 
Use Survey [43] for four building types in the city of San Francisco. The facilities 666 
investigated are a large lodging (LLODG), a large office building (LLOFF), a medium-sized 667 
office building (MLOFF) and a large warehouse (LWRHS). In the reference report several 668 
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run sets with different objectives and frame conditions have been performed [42]. In this 669 
paper, test runs “4e10” from the report have been chosen, where the objective function was to 670 
minimize overall building CO2 emissions considering a maximum global payback time of 10 671 
years for DER investments. Thus, equation 2 as described earlier in this paper is applied as 672 
the objective function. 673 
 674 
Key results obtained in this run suggested the installation of Fuel Cell Systems with a Heat 675 
Exchanger (FC-HX) and Micro-turbines with a Heat Exchanger (MT-HX) as the CO2 optimal 676 
solution. Their technical specifications together with the relevant cost data are listed in Table 677 
3 and are taken from [42]. 678 
 679 

Table 3. Technical specifications of investigated CHP technologies [42] 680 
 681 

Technology Electrical 
capacity 

[kW] 

Lifetime 
[Years] 

Capital 
cost 

[$/kW] 

Maintenance 
cost [$/kWh] 

Full load  
electric 

efficiency 
[%] 

Heat-to-
Power 
ratio α 

[-] 
MT-HX 60 10 1,584 0.017 31 1.8 
MT-HX 150 10 1,290 0.017 33 1.4 
FC-HX 100 10 4,192 0.033 60 0.53 
FC-HX 250 10 3,359 0.033 60 0.53 

MT: micro-turbine, FC: fuel cell, HX: heat exchanger for waste heat utilization 682 
 683 
Part load efficiency data for natural gas powered MT and FC was taken from reports [44] and 684 
[45]. All data was slightly scaled to match the full load electrical efficiencies already specified 685 
in DER-CAM as indicated in Table 3. Table 4 defines the part load performance for two 686 
capacities of a natural gas powered micro-turbine, which are considered in the model. 687 
Analysing the data in this table shows that the maximum efficiency for the large 150 kW 688 
micro-turbine at full load is slightly higher than for the smaller 60 kW unit. The implemented 689 
minimum load for the fuel cell is 30% and for the micro-turbine 10%. 690 
 691 

Table 4. Electrical efficiencies of natural gas powered MT [44] 692 
 693 

 Load level 
Installed capacity U1,t 

0% 
U2,t 
30% 

U3,t 
40% 

U4,t 
50% 

U5,t 
60% 

U6,t 
70% 

U7,t 
80% 

U8,t 
90% 

U9,t 
100% 

P1 60 kW 0 0.227 0.251 0.264 0.277 0.29 0.3 0.306 0.31 
P2 150 kW 0 0.241 0.268 0.281 0.295 0.31 0.32 0.326 0.33 

 694 

 695 
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Fig. 8. Electrical efficiencies for natural gas powered Micro Turbines  696 

 697 
Table 5 indicates the part load efficiencies for both Fuel Cell capacities considered in this 698 
work. According to [42], maximal efficiency for both unit sizes is considered equal. The 699 
tabled values reveal that the slope of the performance curve is close or even equal to zero in 700 
the range of load levels between 60% and 100%.  701 
 702 

Table 5. Electrical efficiencies of natural gas powered Phosphoric Acid FC [45] 703 
 704 

 Load level 
Installed capacity U1,t 

0% 
U2,t 
30% 

U3,t 
40% 

U4,t 
50% 

U5,t 
60% 

U6,t 
70% 

U7,t 
80% 

U8,t 
90% 

U9,t 
100% 

P1 100 kW 0 0.35 0.379 0.391 0.399 0.401 0.401 0.401 0.4 
P2 250 kW 0 0.35 0.379 0.391 0.399 0.401 0.401 0.401 0.4 

 705 

 706 
Fig. 9. Electrical efficiencies for natural gas powered Phosphoric Acid FC  707 

 708 
In the standard version of DER-CAM, minimum load levels were implemented to limit the 709 
impacts of the simplification involving constant efficiencies. This resulted in a rather 710 
conservative minimum load level of 90% for the fuel cell, which was lowered to a minimum 711 
operational load level of 30% in this work, as a result of considering variable efficiencies. 712 
 713 
Based on the input data presented, four different optimization runs were performed for each of 714 
the two methods described to incorporate non-linear efficiency curves. Additionally, the four 715 
reference cases with fixed efficiencies have been reproduced with the latest v4.1.1 DER-CAM 716 
code for the purpose of model validation and solver performance comparison between all 717 
approaches. Thus, a total number of 12 optimization runs have been carried out. 718 
 719 
In the following subchapter the obtained results are presented and discussed in detail. 720 
 721 

5.3. Optimization results 722 
Four buildings in the city of San Francisco have been investigated, as indicated earlier. Fig. 723 
10 depicts the aggregated capacities suggested by DER-CAM when considering the CO2 724 
minimization objective function in all four cases. The results are shown separately for each of 725 
the approaches implemented and the results obtained with fixed efficiencies are referred to as 726 
“original”, representing the base case. The results obtained using binary and SOS2 variables 727 
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to approximate non-linear efficiencies are named correspondingly. Please note that the sizes 728 
for all technologies refer to electrical capacities, except for the heat storage.  729 
 730 

 731 
Fig. 10. Accumulated optimal unit capacities for the four investigated buildings  732 

Results shown in Fig. 10 indicate that the CHP (MT and FC with HX) capacities obtained 733 
using the binary approach and the benchmark constant efficiency methods differ only slightly. 734 
A larger deviation can be observed when using SOS2 variables to model variable efficiencies. 735 
Despite these differences, the ratio between installed fuel cells and micro-turbines is almost 736 
constant for both proposed methods. In all buildings and methods used, discrete-sized 737 
generation technologies selected by DER-CAM were equipped with heat exchangers to allow 738 
CHP operation. Besides MT and FC, PV modules and solar thermal collectors were also part 739 
of the solutions found in all cases. 740 
 741 
It can also be observed that the capacity of DER technologies found by DER-CAM is only 742 
slightly affected by the consideration of variable efficiencies. Fluctuations between the 743 
approaches for PV and ST installations are only minor. Changes for the battery storage 744 
capacities are negligible. The largest observed impact occurred on heat storage, where the use 745 
of the binary approach led to optimal installed capacities nearly twice the size of those 746 
obtained in the base case. 747 
 748 
The reasons for the observed differences can be explained when investigating the results in 749 
greater detail. Tables 6 and 7 lists detailed results for all cases.  750 
 751 
Table 6. Detailed simulation results for the first two buildings and all three approaches 752 
Building case LLODG LLOFF 
Approach Original Binary SOS2 Original Binary SOS2 
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Total Annual CO2 
emissions [kg] 1.805.483 1.758.140 2.122.843 3.548.091 3.560.468 3.529.838 

Costs 
Total Annual Energy 
Costs [$] 697,702 707,919 761,750 1,113,650 1,117,604 1,117,581 

Installed Capacities 
FC-HX [kW] 600 500 0 0 0 0 
MT-HX [kW] 60 60 180 330 390 300 
CHP total [kW] 660 560 180 330 390 300 
PV [kW] 205 222 227 686 661 651 
Solar Thermal [kW] 1,238 1,355 1,331 0 0 0 
Battery Storage [kWh] 0 233 0 0 0 0 
Heat Storage [kWh] 1,776 2,527 1,920 0 490 463 

Energy Generation 
CHP Electricity 
Generation [kWh] 4,998,619 4,314,180 1,021,172 1,901,746 2,217,300 1,901,035 

CHP Heat Generation 
[kWh] 2,630,717 2,418,665 1,838,646 2,999,596 3,429,561 3,296,313 

CHP fuel consumption 
[kWh] 8,428,554 7,326,588 3,294,721 6,020,685 7,045,543 6,141,124 

Model Performance and Key Data 
CPU time [s] 129 23,383 189,321 158 23,368 145,287 
Variables [-] 523,307 1,791,659 2,102,699 523,307 1,791,659 2,102,699 
Equations [-] 293,353 441,961 753,001 293,353 441,961 753,001 
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Table 7. Detailed simulation results for the last two buildings and all three approaches 754 
Building case MLOFF LWRHS 
Approach Original Binary SOS2 Original Binary SOS2 

CO2 emissions 
Total Annual CO2 
emissions [kg] 891.974 196.201 877.663 Missing Missing 171.302  

Costs 
Total Annual Energy 
Costs [$] 484,024 503,673 484,138 131,046 122,984 121,266 

Installed Capacities 
FC-HX 250 0 350 100 100 100 
MT-HX 60 210 0 0 0 0 
CHP total [kW] 310 210 350 100 100 100 
PV [kW] 823 872 731 173 198 201 
Solar Thermal [kW] 133 206 131 3 1 0 
Battery Storage [kWh] 502 471 686 571 372 319 
Heat Storage [kWh] 0 534 0 0 0 0 

Energy Generation 
CHP Electricity 
Generation [kWh] 1,873,291 763,392 2,520,372 574,120 520,960 523,450 

CHP Heat Generation 
[kWh] 1,103,721 1,130,125 1,338,894 51,738 51,794 51,940 

CHP fuel consumption 
[kWh] 3,394,010 2,372,110 4,211,090 956,867 867,984 873,318 

Model Performance and Key Data 
CPU time [s] 2,426 23,536 163,740 21,393 84,334 77,479 
Variables [-] 523,307 1,791,659 2,102,699 523,307 1,791,659 2,102,699 
Equations [-] 293,353 441,961 753,001 293,353 441,961 753,001 
 755 
When investigating the total annual energy costs listed on the top of Tables 6 and 7, it is 756 
observed that these are barely affected by considering flexible efficiencies. The used solver 757 
precision was five percent for which reason deviations in the optimal result lower or equal 758 
than this value are in the precision range and do not necessarily reflect changes induced by the 759 
approaches applying variable efficiencies. The largest deviation can be found for the LLODG 760 
building when using the SOS2 based approach. Otherwise, the changes of total costs are close 761 
to zero. Likewise, as already concluded from the figure above, the average of installed 762 
capacities does not deviate largely from the reference scenario. Solely the size of the CHP 763 
units for the LLODG building is dramatically lower for the approach using SOS2 variables. 764 
 765 
Concerning storage technologies, a large increase can be observed for the hot water tank, as 766 
stated earlier. This is mainly due to a greater ability to generate heat, as the heat-to-power 767 
ratio increases during part load operation. This is a direct consequence of considering variable 768 
efficiencies, as lower electric efficiencies result in a higher ability to recover heat when 769 
compared to the original case where the heat-to-power ratio is assumed to be constant. 770 
Another reason for the increased importance of heat storage is the change in technology 771 
investment. Tables 6 and 7 indicate that MTs are more favorable in the adapted approaches 772 
while FC capacities decrease. Thus, due to the very different heat-to-power ratios of the MT 773 
and FC, the overall ratio between heat and electricity changes significantly from one case to 774 
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the other. Namely, the applied micro-turbine has a much larger heat-to-power ratio than the 775 
considered FC system. These characteristics are also the reason for a strong decline in the 776 
electricity generation for the MLOFF building with the applied binary approach, despite a 777 
slight increase in heat supply. Despite the minor changes in total heat supply, the large 778 
increase in heat storage might be a consequence of the considerable larger amounts of 779 
supplied heat per hour, including solar thermal and the micro-turbine. Thus, it can be 780 
concluded that two factors have an impact on the heat supply rates and consequently heat 781 
storage size:  782 
 783 

1) Changes in the part load heat-to-power ratio and 784 
2) Changes in the overall heat-to-power ratio of the system due to different technology 785 

capacities. 786 
 787 
As stated earlier, overall investment costs are hardly affected by including variable 788 
efficiencies in the optimization process. However, operational performance of all relevant 789 
technologies is different, which would suggest different system costs. Thus, the results 790 
indicate that changes in the technology mix, in this case towards larger microturbine 791 
installations, compensate for variations observed in operational performance. . 792 
 793 
In the last part of both above tables key data for the optimization models is listed. The 794 
required CPU time increased for all the cases considerably. The largest changes can be 795 
observed for the approach using SOS2 variables, which had longer running times up to the 796 
factor 106. The binary approach solved generally faster than the SOS2 alternative. However, it 797 
was still considerably slower than the reference cases with run time increases in the range of 798 
102 to 104. As a conclusion, it can be stated that both approaches cause considerably longer 799 
calculation times with the SOS2 approach having the largest increase. 800 
 801 

5.4. Modelling with variable vs. non-variable efficiencies 802 
As discussed in the previous section, both modelling approaches only have limited impacts on 803 
the objective function. However, calculation time and complexity of the model increase 804 
considerably. Therefore, it is crucial for researchers and system designers to evaluate the 805 
impacts and consequently the need for the presented approaches before applying them in a 806 
specific building optimization. The efficiency data tables presented earlier (Table 2, 4 and 5) 807 
indicated that deviations from the original approach only occur in part loads, for which full 808 
load efficiency cannot be achieved. Fig. 11 depicts the share of the total accumulated amount 809 
of hours of operation of installed units for all four investigated buildings distinguished by the 810 
corresponding load levels. 811 
 812 
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 813 

Fig. 11. Accumulated hours of operation for all buildings at relevant load levels compared by 814 
applied modelling approach 815 

This figure indicates that the units were mostly used in full load operation for both 816 
approaches. Further, distinction between the fuel cell and the micro-turbine modelling is 817 
visible. The micro-turbine is almost exclusively used at full capacity. Fuel cell part load 818 
operation, however, seems to be more relevant. At load levels 30%, 70% and 90% the fuel 819 
cell is operated a considerable amount of time. Altogether, the FC units are modelled 48% 820 
and 44% of the operational time in part load using the binary and the SOS2 approach, 821 
respectively. This observation is important considering the fact that part load operation of fuel 822 
cells is limited to a minimal 90% in the original DER-CAM version considering constant 823 
efficiencies and for that reason fuel cell technology that cannot follow the load. It is also 824 
relevant to note that in DER-CAM the smallest available size for the MT is 60 kW, which is 825 
lower than the minimum installed capacity of 100 kW for the fuel cell. Further, the largest 826 
available size is 250 kW for the fuel cell and only 150 kW for the micro-turbine. This is also 827 
influencing the load performance of the components, since smaller units are more likely to 828 
run in full load. Furthermore, it should be noted that in the original DER-CAM version the 829 
micro-turbine was often used in part load operation. Taking into account the fact that 830 
originally fuel cells are limited to a minimal 90% part load it is interesting to observe that the 831 
micro-turbine is used to a similar extent of what the fuel cells are used once the binary or 832 
SOS2 methods are implemented. However, a general statement cannot be made in this work, 833 
both because of the original imposed constrains in terms of minimal load and because 834 
consumption profiles also change for each building and the determined capacities consist for 835 
several cases of combinations of small and large units. Therefore, it is recommended to 836 
investigate in future studies, if the observation made in this work can be generalized or is only 837 
valid for these specific component sizes. 838 
 839 
Given the results of this study, it can be stated that the effect of variable efficiencies seems to 840 
be technology dependent for the given configurations. Since the micro-turbine is modelled 841 
mainly in full load, the assumption of constant efficiencies is reasonable in DER-CAM. For 842 
fuel cell technologies, however, an approach with variable efficiencies might be relevant for 843 
certain cases and technologies (e.g. PEM fuel cells) given the fact that part load modelling 844 
accounts for up to 48% of the operational time.  845 
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Concerning the performance of the adapted DER-CAM versions, the SOS2 approach caused 846 
the largest increase in calculation time. The advantage of using SOS2 variables is that they 847 
allow for interpolation between tabled load levels in the approach presented and thus might 848 
lead to more precise results. Table 8 indicates the number of interpolations actually applied in 849 
the optimal solutions for all four buildings dependent on the technology.  850 
 851 
Table 8. Total number of interpolations applied in the SOS2 approach for all buildings 852 
 853 

 MT-HX FC-HX 
Number of interpolations 100 279 

 854 
As expected, most of the interpolations have been made for fuel cell units, resulting from part 855 
load operation occurring in a significant amount of time. The micro-turbine operation 856 
required interpolation in a lower number of 100 hours, which represents a very low share of 857 
only 1.4%. Thus, given the large increase in computational time, the SOS2 approach does not 858 
seem favorable for the building range investigated in this work. Further, it should be 859 
mentioned that this approach results in a less flexible model, since SOS2 variables are not 860 
supported by all solvers and their definition is different between solvers. However, for small 861 
scale grid-isolated energy systems, the SOS2 approach could still be favorable, due to an 862 
increased importance of part load performance. The use of the binary approach might not be 863 
applicable for such specific cases, as it does not allow for interpolation, which could be 864 
required to meet the building energy demand supplied by only one or two components. Thus, 865 
it could lead to an infeasible problem. 866 
 867 

6. Conclusion and recommendations 868 
In this paper two approaches were presented to account for variable efficiencies when 869 
modelling CHP technologies in distributed energy systems. Furthermore, the optimization 870 
model DER-CAM was adapted to implement these features and case study optimizations have 871 
been successfully performed to compare both approaches and to evaluate the effect of taking 872 
variable efficiencies into account. The main findings are:  873 
 874 

x The total annual energy costs are not subject to large changes, when considering 875 
variable efficiencies. 876 

x However, changes in the choice of technologies were observed. FC units were 877 
replaced by MT and slightly also vice-versa. The overall installed capacities per 878 
building varied moderately with one extreme example.  879 

x System performance was affected considerably. Storage technologies gained increased 880 
importance, with particular focus on heat storage. 881 

x Further, it was found that in DER-CAM the importance of modelling variable 882 
efficiencies depends on the technology. The micro-turbine was modelled 97% of the 883 
time in full load, which corresponds to the original DER-CAM version with constant 884 
efficiencies. On the contrary, fuel cell units were referred to being operated half of the 885 
time in part load. 886 

x Both approaches increased the calculation time considerably. The binary approach led 887 
to processing times being 2 to 100 times longer. 888 

x The SOS2 approach caused the largest increases by factors up to 106. Interpolations in 889 
load levels were hardly applied. 890 

 891 
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x The results show that constant efficiencies can be reasonable to model CHP 892 
performance. Investment decisions were only slightly different when considering 893 
variable efficiencies. However, when identifying optimal operational strategies, the 894 
presented approaches can lead to recommendations that are more realistic. 895 

 896 
Based on these conclusions, the following recommendations can be made: 897 
 898 

x The implementation of variable efficiencies should not be generally applied due to the 899 
significant increase in computational time. An individual assessment beforehand in 900 
regard to the investigation purpose should be made.  901 

x Results indicate that micro-turbines could be modelled with fixed efficiencies, 902 
although further research is suggested to assess if this observation can be generalized 903 
or if it is only valid for the given component sizes. 904 

x Applying variable efficiencies for fuel cells should be considered and could be subject 905 
to further investigation with an increased number of buildings and locations. 906 

x When modelling variable efficiencies, the binary approach should be used with 907 
processing times being considerably faster than for the SOS2 approach. 908 

x The SOS2 approach could be used for very specific cases investigating small grid-909 
isolated systems, which require a large flexibility in part load operation.  910 

x It is recommended to implement the binary approach also in the Operational version 911 
of DER-CAM, since unit performance is affected and storage solutions gain 912 
importance. 913 
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Figure captions 1091 
Fig. 1. SANKEY diagram indicating energy flows in DER-CAM 1092 
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Fig. 2. Schematic representation of DER-CAM 1097 
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Fig. 3. Maximal electrical efficiencies for natural gas powered ICEs 1101 
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Fig. 4. Electrical efficiencies for a typical natural gas powered ICE in part load 1105 
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Fig. 5. Schematic of the binary approach choosing efficiencies based on installed capacity 1109 
and operational load level at each time step t 1110 
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Fig. 6. Schematic of the approach based on SOS variable declarations to choose efficiencies 1114 
changing with installed capacity and operational load level at each time step t 1115 
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Fig. 7. Schematic of the implementation of the approach using SOS and binary variables into 1119 
DER-CAM 1120 
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Fig. 8. Electrical efficiencies for natural gas powered Micro Turbines  1124 
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Fig. 9. Electrical efficiencies for natural gas powered Phosphoric Acid FC  1128 
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Fig. 10. Accumulated optimal unit capacities for the four investigated buildings 1132 
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Fig. 11. Accumulated hours of operation for all buildings at relevant load levels compared by 1136 
applied modelling approach 1137 

Ö Intended for colour reproduction on the web 1138 
Ö Intended for black-and-white in print 1139 


